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ABSTRACT 

Techniques are presented for Monte-Carlo event generation 

with limited transverse momentum. The phase space integral is 

first split into longitudinal and transverse components. General 

methods are derived for generating transverse momenta according 

to any distribution given as a product of functions of the 

transverse momenta of individual particles. The cases of 

Gaussian, exponential, and power-law distributions are treated. 

Also discussed is the case where one or more produced particles 

have high transverse momentum. 

The longitudinal momenta are generated by decomposing 

the ensemble of particles via a sequence of two-body decays. 

A procedure is given for generating according to uniform 

longitudinal phase space. Also shown are methods for including 

leading particle behavior or longitudinal clustering. Finally 

we incorporate resonances among the particles which may be 

produced wi,th limited transverse momentum. 
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1. Introduction 

Large multiplicities and limited transverse momenta are 

both characteristic of particle reactions at high energy. The 

large multiplicity n of a reaction requires that the phase space 

of 3n - 4 dynamical variables be of rather high dimensionality. 

The limited transverse momenta mean that only a small fraction 

of this' space will be populated. 

The importance of considering both kinematic and dynamic 

effects in single-particle inclusive reactions has recently 
[ll 

been emphasized in an extensive analysis by Taylor et al. 

The calculation of distributions of one or more kinematic 

variables involves phase space integrals of the form 

J= 
i 

F b)d"o (1) 
V 

where the variable p describes a point in the 3n - 4 dimensional 

space of kinematic variables, and V is the region of integration. 

The integrand F usually takes the form 

F = IAI~G (21 

where A is the relativistically invariant complete matrix element 

for the reaction. The factor G includes experimental limitations, 

often represented by step functions, and unintegrated variables, 

represented by delta functions. It may even involve further 

integrations over spaces of additional variables, such as in the 

simulation of electromagnetic or hadronic showers in experimental 

detectors. 

The Monte Carlo methodL2' has been recognized as providing 
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the greatest convenience and generality in evaluating integrals 

of higher dimensionality. The number of function evaluations 

can be chosen at will, the error formula is known and easily 

evaluated, and the validity of the method is not dependent on 

smoothness conditions of the integrand. Greater efficiency can 

be obtained if the random points can be distributed in a manner 

which closely approximates the integrand. The technique of doing 

this is often given the name importance sampling. For particle 

reactions, this means generating events as they occur physically. 

The earliest applications of the Monte Carlo method to the 

simulation of elementary particle reactions were made by Kopylov 131 

and by Raubold and Lynch (unpublished). Their techniques 

produced uniform phase space distributions and relied on a method 

or ordering the generated sequence of random numbers. Later 

generalizations were produced by Gillespie r41 and by Friedman"' 

which allowed event generation according to a wide variety of 

distributions. Extensions to multiperipheral models were produced 

by Byckling, Kaartinen, Kajantie, and VillanenL6] and by Friedman, 

Lynch, Risk, and Zang.['] 

",,Methods for direct event generation with damped transverse 

momentum were first described by Pene and Krzywicki 181 and also 

by Kittel, Van Hove, and Wojcik.['] More recently a third method 

has been derived by Jadach.["] All three methods generate the 

transverse and longitudinal momenta separately. 

All three methods also use an orthogonal rotation technique 

to generate.the transverse momenta. That of Jadach, however, is 
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much simpler than the others and, as we shall see, much more 

easily generalized. Kittel et al also use an orthogonal 

rotation for the longitudinal momenta. They essentially generate 

directly in the Feynman x variable, 1111 resulting in a weight 

factor for each event which contains in the denominator the 

product of the energies of the secondaries. For high energies 

this factor can fluctuate considerably from event to event, thus 

impairing the efficiency of the method. 

Pene and Krzywicki generate the longitudinal momenta via 

a method which is analagous to that used by Kopylov 131 and by 

Raubold and Lynch for all three momentum components. Their 

technique employs an ordering of random numbers and the resulting 

weight factor contains poles in the differences of these random 

numbers. These poles are removed through a rather complicated 

procedure of transformation of variables. The method is quite 

efficient, but, due to the complications in the mathematics, 

has not received the appreciation which it deserves. 

Jadach generates the longitudinal momenta directly in 

the rapidity variable 

yi = lOg[(Ei + p~)/(Ei - Pk)l (3) 

where Ei and pt are respectively the energy and longitudinal 

momentum of the i'th secondary. All three methods use a 

distribution which is given by a product of Gaussian terms in 

the transverse momentum of the secondaries. The longitudinal 

momenta in all three cases are given by relativistically invariant 
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phase space. Therefore the methods, as derived, are not suitable 

for generating according to other distributions, either in 

transverse or longitudinal momentum. 

A distribution which is Gaussian in the transverse momenta 

of the secondaries can be generated directly. In fact, if we 

insist that the distribution be written as the product of factors 

each dependent on the transverse momentum of a single secondary, 

then the Gaussian distribution is the only distribution which is 

invariant under an orthogonal transformation. Therefore the 

efficiency, which is determined by the variation of the weight 

factor, is entirely due to the method of generation of longitudinal 

momenta. The authors have found the method of Fene and Krzywicki 

to be the most efficient in this sense. 

It is desirable to be able to generate events according to 

a variety of distributions. Physical distributions may differ 

according to the identity of the particles involved. The 

consequences of the assumptions of differing matrix elements 

may also be of theoretical interest. Of interest also is the 

contribution of different production mechanisms to the totality 

of a given cross section. Finally, the trigger requirements of 

a given experiment may restrict the class of interesting events. 

Techniques for event generation according to a wide variety 

of distributions are described here. The seperation into transverse 

and longitudinal components is still made. Transverse momenta 

may be generated according to distributions which are Gaussian, 

linear exponential, or power law. One or more particles may be 

given a minimum transverse momentum to simulate high pT experiments. 
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For the Gaussian case, our method reduces to that of Jadach. 

For the longitudinal momen.ta, our method bears certain 

similarities to that of Fene and Krzywicki. However, we have 

der~ived a procedure whereby the factors which produce the poles 

in the weight function are included directly and exactly in the 

generation. Our methoG is therefore bath simpler and more 

flexible than that of Pene and Krzywicki. We can generate 

according to uniform lcngitudinal phase space, produce leading 

particle behavior in one or more secondaries, or produce 

clustering in longitudinal momentum. We can also allow resonances 

to be among the peripherally produced secondaries, including 

correct calculation of threshold behavior. 

The phase space integral is described quantitatively in 

section II below. We review the splitting into transverse and 

longitudinal factors. Techniques for generating the transverse 

momenta are developed in section III. Those for longitudinal 

momenta are described in section IV. The incorporation of 

resonances into this overall scheme is described in section V. 

Finally, some concluding remarks are made in section VI. 
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11. The Phase Space Integral 

The phase space integral we wish to consider is of the form 

J= 
/ 

F b)d"p (4) 
V 

where the production amplitude and the experimental cuts are 

contained in the integrand F. The differential phase space 

element is given by 

dnp = 64 (PO - fpi) ie14(pp)6(Pi2 - mi2)d4pi 
i=l 

(5) 

where the pi are the four-momenta of the produced particles and 

PO is the total four-momentum. The volume V consists of the 

range of momenta kinematically available to the reaction, or 

some subset thereof defined by the cuts. 

We may now decompose the momentum four-vectors into 

longitudinal and transverse components so that 

pi = piL f piT (6) 

The two transverse momentum components are contained in pT, 

while the longitudinal momentum and the energy are contained in 

pL- We choose our metric such that, for a particle on the mass 

shell, we have 

Similarly, we assume that the distribution function F can also 

be decomposed into what we shall term longitudinal and transverse 
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parts 

~({~~‘),{p~]) = FL({pL),{pT;) FT({pT:;) (8) 

where {p") and {p'f are the sets of longitudinal and transverse 

momentum components of the secondaries. The variation with pT 

of FT is much stronger than that of FL. The function FL therefore 

represents any longitudinal structure in the factor F. The 

authors mentioned above [8,9,101, who described eventkgenerators 

for an amplitude which was Gaussian in transverse momentum, 

assumed no longitudinal. structure. Therefore, in their case, 

the longitudinal distribution function FL is just equal to one. 

We further assume that the transverse amplitude can be 

factored into a product of single particle amplitudes 

FT({pT)) = xfllf(PiT) (9) 

The differential phase space element and distribution function 

may now be decomposed 

F do = FLdoL FTdoT 

where the individual factors are 

FLdPL = FL({P~],{P~)) b2(PL - i$lPiL) X 

i[Wp;)6((~~~)~ - 
i=l 

(miL)2)d2piL 

FTdPT ~ 6(fUi)6(fVi) iif(piT)d2pi 
i=l i=l i=l 

(10) 

(11) 

(12) 
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The two transverse momentum components are represented by u 

and v. The longitudinal masses in equation (11) are given by 

L2 
(mi ) 

2 2 = mi + ui + vi 2 
(13) 

In the following we treat first the transverse factor, 

then the longitudinal factor. The longitudinal integral derives 

some of its pT dependence through the presence of the longitudinal 

masses in the mass shell delta functions. Therefore computational 

it is necessary to perform the integrals in the same order. The 

transverse momenta are first obtained, giving the longitudinal 

masses. Then the longitudinal component is evaluated, yielding 

a complete set of four-momenta. 

In the case of both factors we transform variables to 

those whose range is from zero to one. The events can then be 

generated using sets of uniformly distributed random numbers for 

these variables. In each case we will be left with a weighting 

function. It will be given by the product of the distribution 

function at the generated point and the Jacobian of the variable 

transformation. The total weight for the event is given by the 

product of the transverse and longitudinal parts, so that 

w = WT WL (14) 
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III, The Transverse Components 

A. General Considerations 

1. Preliminary Remarks 

The transverse momentum components may be generated according 

to any factorizable, integrable distribution. In fact, if it is 

possible to generate the single particle inclusive transverse 

momentum distribution, then it is possible to generate a complete 

set of four-momenta, including momentum conservation. 

We begin by ignoring energy-momentum conservation and 

generate a complete set of single particle transverse momenta. 

These preliminary transverse momenta qiT are then transformed 

to a new set piT which satisfy momentum conservation. A 

weight factor is calculated which contains both the effect of 

the imposition of momentum conservation and the Jacobian of 

the transformation to the space of random numbers. Possibilities 

for determining the most efficient method of generation are 

explored. The method is then applied to distributions which 

are Gaussian, exponential, or power law in transverse momentum. 

Finally we consider the case where one or more produced particles 

is constrained to have a transverse momentum above a specified 

minimum value. 

2. Mathematical Procedure 

The preliminary transverse momenta qi T are distributed ." 

according to 

f (siTI qiTdqiT 

The most straightforward way of generating such momenta is to 
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integrate directly the product f(qiT)qiT and invert the result. 

In terms of a random number rl derived from a uniform distribution 

from 0 to 1, the magnitude of the transverse momentum is then 

given by 

J qiT f (S1SdL = rlI (15) 
0 

where the factor I represents the integxal from 0 to cu, 

so that 

I= 
I 

0 

f(S)SdC (16) 
0 

The equation resulting from the integration is solved for the 

magnitude of qT. The angle cp of the q T vector in the plane of 

the two q T components is given by a second uniformly distributed 

random number r 2 

cp = 2nr2 (17) 

The complete set of transverse momentum components then requires 

2n random numbers, two for the transverse momentum of each 

particle. 

Not all interesting transverse momentum distributions can 

be treated in such a manner. In some cases the integration, 

represented in equation (15) results in a transcendental equation 

which cannot be solved analytically. In specific cases there 

may be techniques which yield transverse momenta more efficiently 

than an iterative numerical solution of equation (15). Techniques! 

for individual cases are discussed in detail below. 

The components of the generated transverse momenta will 

be denoted by u' and v'. We now follow the procedure of Jadach I101 
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and derive new quant ,it .ies u and v so that 

U’ =u+Ea 

V’ =v+na 

where, for example 

u = ~U1,U7,,...#Un~ 

a= &l,l....,l, 

(18) 

(19) 

and 

u-a = v-a = 0 (2.0) 

The individual transverse momenta of the secondaries are 

now given by the u and v variables. The untransformed momenta 

are distributed according to the function f(qT), while the 

transformed momenta satisfy the delta function constraints. 

Therefore we must weigh~.each event by the factor 

ii 1=1 
f(PiT) 

wl= n 

J!i 
f (qiT) 

1= 

(21) 

where the pi T are the final values of pT and the qi T are those 

before the transformation of variables. 

The weight function is equal to one when E and n are zero, 

which is the most likely value of these two variables. However, 

the transformation of variables represented in equations (18) 

transforms some of the transverse damping to the discarded 
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coordinates E and n. This damping is divided out in the 

denominator, but not reimposed in the numerator of the expression 

for Wl. Therefore, on the average Wl will be an increasing 

function of E and n. Chen and Peierlsr12] have shown that the 

weight factor may be multiplied by arbitrary normalized functions 

of E and n. Because of the cylindrical symmetry of the problem, 

we choose to use a function of- E + n and define a new weight 

w. = g(3@y-& i!lf (piT) 

fi 

1=1 
f ktiT) 

(22) 

Since the discarded coordinates 5 and n represent a single 

transverse two-momentum, it is tempting to choose the g function 

by 

g(C) = & f(C) 

where the integral I is defined in equation (16). However 

Chen and Peierls show that the greatest event generation 

efficiency will occur when in fact 

s(C) a 
iv1 (5) 

QC) 

(23) 

(24) 

where the statistical means indicated are taken with 5 fixed. 

Since Wl(0) is constant, it is expected that g(L) should then 

drop off with increasing 5 more rapidly than f(S). 
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In certain specific cases, as described below, such an 

alternate choice of g(c) will be made. One method is to 

introduce an additional parameter !3 in the function g so that 

we have 

g = g(6,8) (25) 

A possibility for this would be to define g as 

g(C,B) = & [fK)P (26) 

where 

m 

I’ = oWIBd~ (27) 

We may then approximately determine the best value of p by 

using a technique due to Friedman et al. r71 An efficiency is 

defined as 

(28) 

where the statistical means are obtained by random generation 

of a sample of events. A search in i3 is made for the maximum 

of E. For each evaluation of E the same sequence of random 

numbers is used in the generation of the sample of events. 

Results in specific cases will be described below. 

To determine the u portion of the differential phase space 

element, we can formally express the u variables in an orthonormal 

system where the first n-l coordinates {si] span the subspace 

allowed by the 6 function. The remaining coordinate h is 
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measured in the direction of a. We then have 

d% = ‘(i~lUi) ~dui 
i=l 

n;;l 
= 6(fiA)dA rids. 

i=l 1 

Integrating over X, we arrive at 

n-l 
doU = 1 ndsi 

6 1=1 

(29) 

(30) 

The total weight for transverse momentum generation will 

contain a factor of (2rrI)" due to the Jacobian of the transformation 

to the space of random numbers, and a factor of k from the 

transformation of variables to satisfy momentum conservation. 

Then the transverse contribution to the weight function for 

each event will become 

wT = ; (2nI)n g(@-Yq 
fi 
1;l 

f(PiT) 

l--rf kiT) 
i=l 

(31) 

Since the transverse momenta are all generated from zero 

to infinity, it is possible for the energy used in generating 

the transverse momenta to exceed the total energy available to 

the reaction. If this happens, we simply discard the set of 

generated momenta and try again. In principle, then, the weight 

functions should be derived from integrals taken only over the 

kinematically accessible region. However, this is analytically 
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very difficult, if not impossible. At high energies, the 

approximations used will be very good. A rejected set of 

transverse momenta will occur only extremely rarely, and the 

error from the integrals will be much smaller than the statistical 

error from any Monte Carlo sample. 

B. Specific Transverse Momentum Distributions 

1. The Gaussian Distribution 

The case of Gaussian damping in transverse momentum is 

the one most extensively treated in the literature. [8,9,101 

In this case we have 

f(pT) = e ('32 1 

If we choose the function g(I) according to equation (23) 

then our method reduces to that of Jadach. The weight function 

is constant and given by 

WT = ; (2n11n-l (33) 

where 

I=&R2 
2 (34) 

The integral in equation (15) can be performed exactly, giving 

(PT) 2 

$ rlR 2-l - 5 R2 (l-e R2) (35) 

or, solving for p T and redefining rl 

P T = R (-log r1)li2 (36) 
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We choose the normalization function g by equation (23) and 

the weight function then becomes 

T 
3.- 

WT 

y5-rea 

= i (2mI)"-1 e a J-l 1= 

qiT 
n -- 

a 
e 

(42) 

The more general choice of g, represented by equation (26) with 

(3 # 1, does not produce a significant increase in efficiency. 

3. Power Law in Transverse Momentum 

A strict power law in pT would have a singularity at zero, 

thus representing a physically meaningless cross section. We 

therefore use the amplitude discussed in reference 1, where 

f(PT) = 
m2a 

[(P~)~ + m21a 
(43) 

The constant m need have no relation to the mass of the particle, 

but is chosen to give the desired distribution. The normalization 

is chosen so that, like the previous two cases, f(0) will equal 

1. In this case the integral in equation (15) can be performed 

and the resulting equation directly solved for pT giving 

=m 
[ 

1 

PT 1 
1 -1 1 z 

- 

'1 
a-1 

(44) 
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2. Linear Exponential in Transverse Momentum 

The distribution considered here takes the form 

fcpT) = .-pT/a (37) 

We have chosen a form such that the constant a, similarly to 

the previous case, will have the dimensions of momentum. The 

integral in equation (15) becomes 

J 
pT -ii 

e a Sdc = a2 [l - (1 + 
0 

(38) 

giving a value for the definite integral from 0 to co of 

I = a2 (39) 

However, equation (38) being transcendental is not analytically 

solvable for p T . We may circumvent this difficulty by a 

procedure from Everett and Cashwell. [131 Here we use three 

random numbers rl, r2, and r3, each with uniform distribution 

from 0 to 1, to generate the two transverse momentum components 

of a single particle. The magnitude of the, transverse momentum 

is given by 

pT = - a log (rlr2) (40) 

while the angle in the x-y plane is given by 

cp = 2nr 3 (41) 
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The integral I is given by 

(45) 

The greatest generation efficiency is obtained if the function 

g is a more sharply decreasing function of its argument than 

is f. Using reference 1 as a guide we choose as an example the 

case where a equals 4.0 and m equals 1.0. Then, if the function 

g is chosen according to equation (26), the value of @ giving 

the greatest efficiency is 1.62. This conclusion is independent 

of multiplicity. The total transverse weight for each event 

is given by equation (31), with no simplification in form. 

C. High Transverse Momentum Particles 

1. General Procedures 

The production of one or more secondaries with large pT 

is often of interest. It may be the trigger for an experiment [141 

or it may be of theoretical interest as isolating certain 

production mechanisms. [151 We discuss here the case where a 

single particle is required to have a transverse momentum greater 

than some specified minimum pTmin. 

We choose particle no. 1 as being the secondary which is 

required to have high transverse momentum. Its transverse 

momentum p1 
T 

is obtained from the distribution f with the 

T constraint that it must exceed p min. In terms of a random 

number with a uniform distribution from 0 to 1, p1 T is given by 

(46) 
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where now 

f(S)GK (47) 

We now generate and transform the transverse momenta of 

the remaining n-l particles similarly to the previous case. 

The two components u' and v' of the transverse momentum are 

generated from the distribution function f. They are then 

transformed to new momenta u and v via 

U’ =u+ [E+- 
& p1J a 

V’ = v + IT) + 
& plY1 a 

where now 

a = -JL (O,l,l I-.-, 1) 
-b&i 

The values of E and n are chosen so that 

E = ~'.a 

(48) 

(49) 

(50) 

Proceeding as before, the total transverse weight for the event 

is 

WT =.A (2TcI)"-l (2nIl) q()/m) IIf (PiT) 
n (51) 

l-L i= 
f (qiT) 
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Once again the qi are the untransformed transverse momenta 

initially generated, while the p. 
1 are the transformed momenta 

satisfying momentum conservation. The products go from 2 to 

n, since the momentum of particle one is unaffected by the 

transformation from the q's to the p's. 

2. The Gaussian Distribution 

For the Gaussian distribution the integral in equation 

(46) may be performed directly and solved for plT. 

of r,, we have 
L 

1. 
T 

Pl 
= [(P~,~,)~ - R210g r112 

The total transverse weight takes the form 

wT = & (2nI)n-2(2u11) (53) 

where 
(PTminJ2 

I1 
=;R2e R2 

In terms 

(52) 

(54) 

3. Linear Exponential 

For the linear exponential, equation (46) may be integrated 

but cannot be solved analytically for plT. In the case where 

PTmin was equal to zero, we obtained the required p T from a set 

of two random numbers according to equation (40). The set of 

two random numbers with uniform distribution from 0 to 1 may be 

regarded as a point in a unit square with uniform probability 

distribution. 

Now we wish to generate according to the same distribution 
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f, but subject to the constraint plT > pTmin. This means that 

we wish once again to generate a point with uniform distribution 

in a unit square, but with a segment removed. That segment 

is the region where 

PTmin 
a 

rlr2 > e (55) 

The region from which points are to be taken is shown as the 

shaded area in figure 1. 

We define a quantity P via 

PTmin 

P=e a (56) 

Then the area A of the shaded region is given by 

A=P-PlogP (57) 

We define two new random numbers p1 and p2, generated uniformly 

between 0 and 1. if olA < P, - then we obtain r1 and r2 as 

'1 = plA 

r2 = p2 

If plA>P, then we have 

'1 =Pe 
; plA - 1 

(59) 

r2 = P2P/rl 

(58) 
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Then we have, as before 

T 
Pl = - a 109 (r1r2) (60) 

The remaining momenta are generated as described above. Once 

again we choose the function q by equation (23) and arrive at 

a final weight of 

P:T 

with 

WT = --& (2rcI)n-2 (2nIl) e 
-QT$ ije-e 

-qiT 

fie a 

PTmin 
2 -a Il=a e (1 + 

PTmin 
a ) 

(61) 

(62) 

4. Power Law 

The power law distribution described earlier can be 

generated directly. In terms of pTmin and r 1, the momentum 

T 
Pl is given as 

1 

T 
Pl = 

[ 

(pTmin) 2 + m2 
-m 

2 y 

,l 
(1-I I 

rl 

(63) 

T'." 
We choose the normalizing function q as in the case with p min 

equal to 0. Then the transverse weight function is given just 

as in equation (51) with 

I1 = 
m2a 

2(a-1) [(PTmin)2 + m21am1 
(64) 
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IV. The Longitudinal Components 

A. General Considerations 

We begin by decomposing the n-particle ensemble via a 

succession of quasi-two-body decays into n single particle 

states. The manner of splitting may be chosen either to 

represent some physical mechanism, or for mathematical 

convenience. The variables describing this decomposition 

are then the invariant masses of the intermediate multiparticle 

states. 

These invariant masses are then related to another ~set of 

variables with range from zero to one. The distribution of 

these variables as required by phase-space kinematics is 

derived below. 

The generated distribution of random numbers used for 

these variables will depend on both phase space and on the 

longitudinal distribution,.function F. Once the invariant 

masses are known, the center-of-mass momenta at a given vertex 

can be calculated. These momenta may then be Lorentz transformed 

to the laboratory frame giving a complete set of particle~four- 

momenta. 

For uniform longitudinal phase space the method of 

decomposition and distribution of the associated random numbers 

giving maximum efficiency are derived. We compare the efficiency 

of our method with that of other authors and find we have achieved 

a considerable improvement at high multiplicity. 

Leading particle distributions may be imposed by breaking 

single particles away~ from the remainder and giving them any 

distribution desired. The remaining ensemble may then be given 
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uniform longitudinal distribution. We derive methods for 

generating the leading particle momenta and calculate the 

contribution to the longitudinal weight function. 

Finally, any longitudinal structure can be incorporated 

into our scheme. We give an example where the secondary 

particles are produced in two clusters, the mass of each 

being exponentially damped. These masses are then generated 

in a manner which includes both the damping and the phase 

space factors. The final longitudinal weight is a product 

of factors which vary slowly over the available kinematic range. 

B. Phase Space Factorization 

The n-body longitudinal phase-space element dpn (temporarily 

dropping the subscript L) may be factored in a manner similar 

to that commonly used for n-body uniform phase space. I161 The 

ensemble of n particles can be decomposed into two ensembles of 

k and n-k particles as follows 

dpn = ' duk2 dunsk2 
2qkwn 

a(qk2) dPk aon-k 

The quantities uk and unwk represent respectively the invariant 

masses of the ensembles of k and n-k particles. The center-of- 

mass momentum of the ensembles is q k, while the total energy 

of the system of n particles is W 
n' 

We call attention, at this point, to a discrepancy of a 

factor of 2 from what would be obtained by straight transformation 

of variables. This is a "solid angle factor" which represents 

the surface measure of a one-dimensional sphere (i.e. two points). 
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Physically it is due to the existence of a twofold choice'of 

the direction of motion of the factored parts of the original 

ensemble. 

We can continue to decompose the remaining multiparticle 

ensembles until the phase-space element is reduced to single 

particle states. The decomposition can then be represented by 

a tree as shown in figure 2. The splitting can be done in any 

manner desired. The only requirement is that momentum and 

energy be conserved at every stage. Reasons for preferring 

one topology to another will be discussed in conjunction with 

specific applications below. 

The phase space element don now reduces to 

dpn = 6(s2 - Eo2 ) S(connected) fl ' 
i=2 2~iqi dui 

= 6(un2 - Eo2 ) S(connected) fi L dui S(qi2) 
ix2 4i 

The factor S(connected) merely indicates that the decomposition 

is to be done according to the tree structure specified. A 

tree representing the decomposition of an n particle state will 

have n-1 nodes, and therefore n-2 invariant masses to generate. 

With each node we associate the mass of the immediately upstream 

branch. The mass upstream of the primary node is just the 

total energy E. of the system, thus giving rise to the delta 

function in equation (66). 

For Monte Carlo event generation we must finally transform 

the invariant mass variables to a set of n-2 variables each 
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with a range from zero to one. These latter variables are 

the set of uniformly distributed random numbers used in event 

generation. The Jacobian of the transformation to these 

variables is contained in the longitudinal weighting factor. 

The mass of each branch is generated from the range of 

masses kinematically available. To illustrate we isolate in 

figure 3 a segment of the tree shown in figure 2. 

As before we denote the invariant mass of each branch as 

ui and the sum of the longitudinal masses of the particles 

comprising the branch as Si. In the figure we generate.the 

masses of the branches in alphabetical order. We also associate 

with each branch a random variable ri which may range from 0 

to 1, but whose distribution is as yet undetermined. 

We may now define the invariant masses u in terms of the 

variables T by 

ua = bn-Sa-Sb)Ta+Sa 

s = (u n - u a - Sb)Tb + Sb 

UC = ‘% - sc - Sd)Ti + SC 
Ud = cub - UC - Sd)Td + Sd 

so that 

dua = (u, - S, - Sb)dra 

dy, = 'un - ua - Sb)drb 

du, = 'I.+, - SC - Sd)drc 

dud = Cub - UC - Sd)drd 

(67) 

(68) 
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The quantity in parentheses in each equation, which multiplies 

the T variable, is the factor which contributes to the Jacobian 

of the transformation from the u variables to the T variables. 

It is the measure of the range kinematically available to the 

mass being generated. Except in the case of the first mass, 

this range is variable and would contribute to variations in 

the weight function. Such variations would then decrease the 

overall event generation efficiency. 

However, in each equation containing a u variable on the 

right hand side, we may substitute the expression for that u 

variable from the equations above it. We then derive 

du, = (u n - Sn)d-ca 

dUb = (Un - Sn) (1 - ra)drb (69) 

du, = (‘111 - Sn) (1 - Ta)rbdrc 

dUd = (U,, - Sn) (1 - ra)rb(l - rc)drd 

The center-of-mass momenta qi in equation (66) occur in 

the denominator of the weight factor. These momenta can have 

the value zero when the associated masses are at the extreme of 

their kinematic range. We therefore have a set of poles in the 

weight function which would then, at the very least, damage the 

efficiency of the event generation. 

Examining in detail, for example, the center-of-mass 

momentum at the node downstream of branch b in figure 3, we 



-3o- 

have 
1 

rcy, + UC + ud) '!+, - UC + ud) (t+, + UC - !-$ ',$, - PC - pd) ] 
z 

qb = 
2ub 

(70) 

Defining a new quantity R according to 

1 
R b = [ h+, + UC + ud) h$, - UC + pd) (,+, + UC - ud) 1' (71) 

we then have 

% 
1 

'b = q tub - UC - Ud) 
5 

where now the factor in parentheses is the only one which can 

equal zero, and therefore yields the pole in the weight function. 

However, we also have 

s - UC - Ud = bn - Sn) (1 - ra)Tb(l - rc) (1 - Td) 

We may now rewrite equation (66) as 

n-3 

don = &- 
- 2Fr. 

0 
S(connected) (E. - Sn) 2 fi 1 

i=2 Ri 

. I 
(1 - r$li dr. 1 

The exponent ji receives contributions as follows: 

a) 1 for each branch whose mass increases with ~~~ 

b) - t for each node whose center-of-mass momentum 

increases with Ti. 

(73) 

(74) 
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The exponent ji' receives contributions from 

a) 1 for each branch whose mass decreases with 'i 

b) - i for each node whose center-of-mass momentum 

decreases with ri. 

We now consider a branch of k particles which is decomposed 

into branches of kl and k2 particles, as shown in figure 4. 

Downstream of branch a one would find k 
1 - 1 nodes and kl - 2 

multiparticle branches. Downstream of branch b one would find 

kc2 - 1 nodes and k2 - 2 multiparticle branches. If we generate 

u, first, then all momenta and masses emanating from either 

branch depend on ra. Generating ub second, only those momenta 

and masses emanating from branch b, plus the center-of-mass 

momentum at the node shown depend on T 
b' Therefore, in equation 

(74) the factors associated with -ra are =a 
&-3) 

(l-t,) 
;(k2-2) 

$(k2-3) 
1 

and~those associated with T 
b are = b (l-Tb) 7 

Below we describe methods of generation of the invariant 

masses of the branches which are appropriate to different 

longitudinal distribution functions. Once the invariant masses 

of both branches leading from a given node are known, the 

center-of-mass momentum of the branches at that node may be 

calculated through equation (70). The four-momenta of these 

branches in any other reference system may then be obtained via 

a Lorentz transformation. 

In particular, one may obtain the four-momenta of all 

branches in the center-of-mass system of the entire reaction. 

In this case, all Lorentz transformations are longitudinal 
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and involve only longitudinal momentum components. The 

transformations may be derived iteratively. If the longitudinal 

momentum and energy of a branch in the center of mass of the 

immediately upstream branch are q and E respectively, then 

the corresponding components p and E in the total center of 

mass are given by 

p = yq + TiE 

E = YE + nq 

The factors y and n are given in terms of the momentum p', 

energy E' and invariant mass M of the upstream branch by 

(75) 

(76) 

Starting with the entire ensemble of n particles, where 

y is 1 and n is 0, we can proceed down the branches of the 

tree. At each node we generate whatever invariant masses are 

as yet undetermined, and Lorentz transform the resulting 

four-momenta. The terminal branches will be the final state 

particles whose four-momenta will then have been generated. 

C. Uniform Longitudinal Phase Space 

The first case of interest is clearly that of uniform 

longitudinal phase space where the longitudinal distribution 

function FL,. defined in equation (8) is unity. Therefore we 
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wish to generate the numbers ri according to the distributions 

derived in the previous section. When an ensemble of k particles 

is split into two ensembles of k 
1 and k2 particles, we wish 

to define -ca and r b in terms of two random numbers r 
1 and r 2' 

uniformly distributed from zero to one, so that 

drl 
Qdr== 

&-3) 

a a (l-Tal 
$(k2-2) 

(77) 

dr2 
1 

'2 5 = 'b 
+b2-3) 

(l-Tb) -z 

The two integrals 11 and I 2 are defined so that both the r 

variables and the r variables vary from zero to one. They are 

given by 

1 
I 

;(kl-3) %k -2) 
1= 0 ra (l-=,j2 2 dr a (78) 

i 

1 ;(k2-3) 1 

'2= O=b (l-rb)-'d-c 
b 

The solution for the r variables in terms of the r variables 

may be performed analytically if we choose k 2 equal to 2 and 

kl equal to k-2. Then we have 

2 

ra = rl 
kl-1 

(79) 

=b = ij (1 + sin n(rl-+-)I 
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and 

11 = + (80) 

I2 =Tl 

Therefore we proceed by splitting off particles two at a time 

as shown in figure 5. Each such split contributes a factor of 

1112 to the longitudinal weight. The exception is when a set of 

three particles is split into a set of two plus a single particle. 

In that case kl = 1 and the mass of one branch is already given. 

Therefore only a factor of I 
2 is contributed to the longitudinal 

weight. We now have 

n-3 

ti = &- (EO-S,) ' fi 2 I 
0 -1 1 i=2 Ri W 

(81) 

where I 
W 

contains the factors of I 
1 and I2 as described above. 

The twofold choice of direction of the split may be made 

with the aid of another random number. The center-of-mass momenta 

are obtained from the generated masses and the laboratory momenta 

and energies are finally obtained by Lorentz transformation. 

We compare the efficiency of our method with that of Pene 

and Krzywickit8' for the reaction p + p -+ p + p + (n-2)n at 

200 GeV/c. We may evaluate the efficiency using the expression 

given by equation (30). If we generate the transverse momenta 

with a Gaussian distribution, the transverse component of the 

total weight will be constant. The efficiency obtained will then 

be entirely a reflection of the method of generation of 
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longitudinal momenta. 

We find that for low multiplicities the efficiencies of 

our method and that of Pene and Krzywicki are comparable. At 

a multiplicity of four, the efficiency of the method of Pene and 

Krzywicki is about 90% while that of our method is about 80%. 

However, as the multiplicity is increased, the efficiency of the 

method of Pene and Krzywicki decreases, reaching a value of 

approximately 20% for a multiplicity of 24. The efficiency of 

our method changes very little, and is still approximately 60% 

for a multiplicity of 24. A plot of the efficiencies of the 

two methods versus multiplicity may be seen in figure 6. It is 

clear that the exact treatment of the T factors in our method 

offers a considerable improvement in efficiency at high multiplicity 

over the pole removal technique of Pene and Krzywicki. 

D. Leading Particle Behavior 

Experimentally[17' the longitudinal momentum distribution 

of protons in the products of proton-proton collisions is quite 

different from that given by uniform longitudinal phase space. 

It is desirable to be able to generate events where the 

distribution of the longitudinal momentum of the final state 

protons is much more uniform in Feynman x. This can be done 

by choosing the longitudinal distribution function in equation 

(10) as follows 

FL = ElEn (82) 

where E 1 ana En are the center-of-mass energies of the first 



-36- 

and n'th secondary. If we now integrate out the individual 

particle energies we derive 

PLdPL = S2(PL - i$lpiL) (83) 

which may be rewritten as 

n-l 

FLdoL 
= + 62 (PL - plL - p L - 

n ig2PiL) dplLdpnL E; ?$ (84) 

The term on the right side is just + dplLdpnL times the 

longitudinal phase space element for n-2 particles. 

The two momenta pl L 
and P, 

L may now be generated with 

uniform distribution from zero to their maximum values. The 

direction of each is also chosen randomly. Then the remaining 

n-2 particle momenta are generated according to uniform 

longitudinal phase space, as described in the previous section. 

The total longitudinal weight then becomes 

p+J= L 
'1 max PnLmax u WL 

where L W u is the longitudinal weight for n-2 particles generated 

uniformly as given by equation (81). The two factors p L 
1 max 

and p L 
n max 

are the maximum possible momenta for the first and 

n'th produced particles. If plL is generated first, then the 

value of p L nLmax will depend on the value of pl . 

This weight factor will, of course, be a function of the 

total enerqy,of the n-2 particle system of non-leading particles. 
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This total energy will, in turn, depend on the generated momenta 

of the leading particles. Therefore, in principle, the distribution 

of generated events still contains some dependence on the leading 

particle momenta. However, in fact, the authors have found this 

dependence to be sufficiently weak so that this generation method 

is suitable for any practical application. 

The leading particles may, in fact, be given distributions 

which are any function of the Eeynman x variable. If we want the 

distributions of pl L 
and P, L to be given by fl(x1) and fn(xn) 

respectively, then we use a longitudinal distribution function 

given by 

FL = EIEnfl lx,) f,, (x,) 

Pl 
L 

PL 
= EIEnfl (,I fn (" W) 

(86) 

where W is the total center-of-mass energy. 

The two leading particle momenta are again broken off 

as in equation (84), which now becomes 

n-l 
FLdPL = + w2 $(PL - plL - pnL - =~2PiL) fl(xl)fn(Xn)dXldxn ~~~ dpiL 

i 

(87) 

The two x values are now determined in terms of two uniformly 

distributed random numbers rl and r n by 



fl(C)dS = r I 11 

n 
f,(C)db = rnIn 

nmax 

where 

fl (C)X 

(88) 

(89) 

nmax 
I = 

n f,K)dL 
nmax 

The limits of the integral of f n depend on the generated value 

of x 1' 
They are essentially the extreme values of xn kinematically 

possible given the generated value of xl. The remaining n-2 

particles may then be generated according to uniform longitudinal 

phase space, as described in the previous section. The total 

weight for an event then becomes 

WL = 1 -&w21 I wL In u 

The leading particle distribution functions may be any 

of a wide variety of possibilities. If equations (88) are 

solvable for x 
1 and x n, then the leading particle momentum values 

may be generated analytically. Possible examples of such 

distributions might be (l-x)o, eeax, or a + bx. 

It should also be mentioned that it is possible to 

generate a leading particle momentum according to any finite 
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sum of invertable distributions. We shall illustrate the method 

for the sum of two distributions. The case of the sum of any 

finite number of distributions then follows by induction. 

Consider the case 

f,(x) = fl,(X) + fib(X) 

Then we have 

'1 = 'la + 'lb 

(91) 

(92) 

where each I represents the integral of the similarly subscripted 

f function over the available kinematic interval. We now choose 

a random number r generated with uniform distribution from 0 to 

1. If we have 

r11 5 Ila (93) 

then we generate xl according to distribution f 
la' 

Otherwise 

we generate x 1 according to distribution f 
lb' 

Single leading particle distributions may also be generated 

in an obvious fashion. An essentially uniform distribution 

may be obtained by choosing the longitudinal weighting function 

equal to the center-of-mass energy of the leading particle. 

Then only one particle would be split off from the remainder in 

equation (84). It could also be given any desired x distribution. 

The remaining particles would then be generated according to 

uniform longitudinal phase space. 
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E. Longitudinal Clustering 

As described in section IV B, the ensemble of n particles 

may be decomposed into single particles by any possible tree. 

The phase space factors associated with each generated intermediate 

mass are then given in equation (74) and the text following. 

Some (or all) of these intermediate multiparticle states 

may actually represent physical clusterings of particles and 

therefore be reflected in the longitudinal distribution function. 

In generating longitudinal momenta, therefore, we must take into 

account both the longitudinal distribution function and the 

phase space factors. 

It is important therefore to distinguish between the form 

of the distribution function and that of the final distribution. 

Because of the phase space factors, a distribution function 

which is a given function of certain kinematic variables need 

not produce final distributions which are the same (or even 

similar) functions of the same kinematic variables. As seen in 

the section on leading particle behavior, a non-uniform distribution 

function is needed in order to generate essentially uniform 

leading particle longitudinal momentum distributions. 

Because of these considerations, the method of generation 

may depend on how sharply structured the distribution function 

FL is compared to the underlying phase space factors. If the 

structure of the amplitude is very sharp (as is the case with a 

narrow resonance) then it may be appropriate to generate the 

cluster masses according to the distribution function F 
L alone. 
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The phase space factors are then evaluated and contribute to 

the final longitudinal weight WL of the generated event. The 

variation of these factors over the kinematic range of generated 

events will then be small and the generation efficiency will be 

satisfactory. 

If the rate of variation of the function F 
L and that of 

the underlying phase space factors are comparable, then it is 

necessary to take both into account in the event generation. 

It is best to illustrate the application of our method with a 

simple example. 

We consider the formation of two longitudinal clusters as 

shown in figure 7. Each cluster might decay by the successive 

emission of single particles. We assume that individual particles 

are given off with an exponential momentum distribution with a 

scale factor of a. We then consider only the effect on the total 

mass distribution of each of the clusters. 

It is then reasonable to assume that the factor for each 

cluster which enters into the distribution function F 
L is given 

M 
F = e-a(k-l) (94) 

where M is the mass of the cluster and k is its multiplicity. 

For an ensemble of n particles which forms two clusters of k 

and n-k particles, the total distribution function FL is then 

given by 
Ml W2 

F 
L 

= e-a(k-l) e-a(n-k-l) 
(95) 
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Therefore we wish to generate Ml and M2 by distributions which 

correspond as closely as possible to the product of the 

exponential times the phase space factor. For the first 

cluster this distribution becomes 

Ml k-3 n-k 

fl = e -a(k-1) 2 
-- 1 

=1 (l-r11 2 (96) 

while for the second we have 

M2 n-k-3 1 
f 

2 
= e-a(n-k-l) 

-- 

=2 
2 (l-72) 2 (97) 

We let S 
1 and S2 be the sums of the longitudinal masses of 

the particles composing clusters 1 and 2 respectively. Then the 

relations between the masses M and the T'S is as follows: 

M1 = (W - s1 - S2)T1 + s1 (98) 

M2 
= (W - Ml - S2)r2 + S2 

where W is the total center-of-mass energy of the system. We 

can remove the pole in T 2 by a transformation of variables 

t2 = a(2 - a) (99) 

so that if we now qenrate in a, the appropriate distribution 

becomes 
M2 n-k-3 n-k-3 

f2' = e -a(n-k-l) o 2 (2 - a) 2 (100) 

Since the masses are exponentially damped, at high energies 

the generated values of r 
1 

and o will almost always be small, 
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and the factors of l-r 1 and 2-5 will suffer little variation. 

For the same reason we can generate -c2 and o from zero to 

infinity. If a mass value generated does not fall within the 

kinematic bounds, we discard that value and generate another. 

With the exponentially damped masses, and at high energy the 

probability of a generated mass not falling within the 

kinematically allowed limits is vanishingly small. 

We therefore generate two random numbers r 
1 

and r 2 

according to the distribution 

(101) 

where i 1 is the greatest integer equal to or less than (k-3)/2, 

and i2 bears the same relationship to (n-k-3)/2. The generation 

may be done by taking 13 

r = - log KJ 'i (102) 

where n.si is the product of i+l random numbers, each generated 

with uniform distribution from zero to one. The variables r1 

and u may now be evaluated as 

T1 = 
a (k-l) 

w - s1 - S2) rl 

a (n-k-l) 
u = 2(W - Ml - S2) r2 

(103) 

From these expressions the invariant masses may be evaluated 

using equations (98) and (99). 
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We may then decompose the two clusters according to uniform 

longitudinal phase space. The final longitudinal weight Wb for 

the event involves the Jacobians of all variable transformations 

and all discarded terms. It therefore becomes 

n-3 
wL= & CEO - SnJT k! 

a(k-1) 1 
il+l 

(n-k)! 
n (W - s1 - S2) X 

! a(n-k-l) 1 
i2+1 sl 

ema(k-1) 
s2 n-k 

2(W - Ml - S2) 
,-a(n-k-l) 

=1 
'1 (1-r ) 2 

--1 x 

1 

oj2 
n-k-3 (w - Ml - s2b2 

(2-o) 2 e a(n-k-l) 
'k 'n-k (104) 

The exponent j, will be 0 if (k-3)/2 is integer and l/2 otherwise, 

while the exponent j, bears the same relationship to (n-k-3)/2. 

The factor R 
n 

is the term defined in equation (71) applied to 

the primary vertex. The two factors I k and I n-k represent the 

phase space factors for the decomposition of the two clusters. 

As shown in equation (81), Ik, for example, may be written as 

'k = [ fi % ] =wk (105) 

This method can easily be extended or modified to include 

other longitudinal structure. One might wish to generate events 

in which three clusters are formed as shown in figure 8. One 

would first generate the invariant mass M 
1 of the first cluster 
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and the invariant mass M 
2 of the other two clusters taken together. 

Then one would decompose M2 by generating the individual invariant 

masses M 
3 and M 4 of the two remaining clusters. Finally, one 

could decompose each of the three clusters into single particle 

states, using either uniform longitudinal phase space or some 

other desired mechanism. 
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V. Resonances 

The method of production of particles with limited transverse 

momentum can be extended to include resonances. The amplitude 

limiting the transverse momentum of secondaries would then apply 

to the momentum of the resonances. The resonances could then 

be made to decay according to any desired distribution in their 

own center of mass. 

Therefore the first step in event generation would be to 

determine the mass of each resonance. The phase-space distribution 

function for a resonance mass is given in terms of a Breit-Wiqner 

function 

BW(MR) = 1 

C"R 
I 

2+1 
(106) 

The quantity uR gives the central mass of the resonance, while 

rR gives its width. The combined distribution function and 

differential phase space element then become 

F d"o = BW(MRi) Di(pRi)] FL({pLj+?Tj) FT({pT)) d"o (107) 

The factor Di(pR ) gives the distribution function for the decay 
i 

of the i'th resonance. The differential phase-space element 

may now be factored to isolate the mass of a resonance 

d"o = dMR2 dkoR dn-k+lp 

The factor dkp R is the phase space associated with the decay of 

a resonance of k particles. This procedure may be iterated until 
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(109) 

The number N gives the sum of the number of primary resonances 

plus the number of directly produced stable particles. The 

momenta in dNo are then just those occuring in the distribution 

functions FL and FT, described in section II. 

To genexate the mass of the resonances we use a slight 

modification of a well-known method.15] The mass is given in 

terms of a random number x, uniformly distributed from zero to 

one as 

-ltMR - uR 
r/2 ) - tan 1 = rH 

where H is the maximum value of the expression on the left 

tan-l c”max - uR) 

r/2 
- tan -lCs - uR) 

r/2 1 

(110) 

(111) 

The quantity S is the sum of the rest masses of the stable 

particles which comprise the resonance. The quantity Mm,, is 

the maximum kinematically allowed mass for the resonance. 

The masses of the resonances produced in the reaction may 

be successively generated by the above method. The quantity H 

for each resonance will be a factor in the total weight of the 

event. The phase space of the resonance may then be decomposed 

using techniques described by Friedman. [51 

At high energies the maximum kinematically allowed mass 

Mm,, of the resonance can be quite large. As the mass of a 
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resonance is increased beyond several full widths above its 

central value, the weight for the event,begins to increase 

due to the phase space factors in dkpR. A histogram of 

generated masses will then show a high-energy rise, well 

beyond the normal peak of the resonance at its central value. 

This behavior is not what is ordinarily thought of as 

part of the resonant structure. There we have simply given 

the mass of the resonance a high energy cut off of three 

full widths above its central value. The quantity Mmax is 

then given by 

Sax =p-t3r (112) 

if this value is smaller than the kinematically allowed 

maximum. 

Given the resonance masses, one can then generate the 

four-momenta of all the resonances and directly produced~ 

stable particles. The resonances can be made to decay using 

lower-energy phase space techniques. Finally the weight for 

each event will be just the total weight for the peripheral 

event generation times a product of weighting factors for 

the resonances. The weight factor for each resonance will 

consist of the product of its H factor, as shown in equation 

(ill), and the weight from its phase space decomposition. 
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VI. Concluding Remarks 

The methods described in the preceding sections represent 

both general procedures and specific techniques for generation 

according to certain distribution functions. It is clear that 

not everything described can be written into a single computer 

program. 

However, all specific distributions mentioned above have 

been programmed by the authors and used to generate events. 

Many have been incorporated into the Monte-Carlo phase space 

computer program NVERTX. [181 Others have been programmed by 

the temporary replacement of an NVERTX subroutine. Essentially 

any distribution which can be generated by the methods described 

in this paper can be programmed using the latter method. For 

specific details the reader should consult the NVERTX manual. Cl91 

For Gaussian damped transverse momentum the generation 

subroutines employ the method of Jadach t101 . For continuity 

with low energies, he reduces the magnitude of the transverse 

momentum scale factor as the energy is lowered. However, as 

used by the present authors, the final weight function represents 

generation using the transverse scale factor specified by the 

user. 

The generating subroutines are also sufficiently self- 

contained so that they can be used as a separate package. The 

authors have also made use of them in this mode. Their use is 

simple enough so that little additional programming is required. 

This latter mode of event generation also allows the user 
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to vary the multiplicity. A specified number of events of 

a given multiplicity may be generated and the desired 

distributions obtained. These distributions may then be 

renormalized using the average weight of the generated sample. 

Finally, the distributions may be combined with those from 

other multiplicities. The high efficiency of the generation 

methods described here allow statistically accurate determination 

of the renormalization factor. The authors have generated 

events in this manner also. 

Although we have described a variety of methods, ,we have 

limited ourselves to those distributions where the longitudinal 

and transverse momentum components are in some sense separable, 

and the transverse components are damped. For these cases, 

the methods described give a high degree of generation 

efficiency. For other distributions, techniques such as others 

in NVERTS, or the Monte-Carlo phase-space program FOWL r201 may 

be appropriate. 
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Fig. 1. Domain of the pair of random numbers used to generate 
exponentially distributed transverse momenta with non-zero 
minimum. The two random numbers r1 and r2 are given uniform 
distribution in the cross-hatched area. 



-54- 

Fig. 2. Tree used to generate the longitudinal momenta of the secondary 
particles. The initial n-body state is reduced to a set of single-body 
states via a sequence of quasi-two-body decays. 
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Fig. 3. A segment of the tree shown in Fig. 2. Two nodes are shown and 
the branches are labeled in the order in which the masses are generated. 
In the text it is shown how the range of masses available to a given branch 
depends on the masses of the preceding branches. 

Fig. 4. A single multiparticle branch is split into two multiparticle 
branches. The mass distribution of the first branch depends on the number 
of particles in both branches. The mass distribution of the second branch 
depends on the number of particles in that branch alone. 
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Fig. 5. The tree used to generate longitudinal momenta with uniform 
phase space distribution. The particles are split off from the remainder 
two at a time. 
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Fig. 6. The efficiencies for generation of longitudinal momenta are 
shown as a function of multiplicity. Given are the results for our 
method and for that of Pene and Krzywicki. 
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Fig. 7. The production of secondary particles in two longitudinal clusters. 
The invariant masses of these clusters are M1 and M2. 
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Fig. 8. The production of secondary particles in three longitudinal 
clusters. The invariant mass of the first cluster is Ml while that of 
the second and third together is M2. The individual invariant masses of 
the second and third clusters are M3 and M4 respectively. 


